Логарифмические уравнения
Если Вам попалось выражение, функция или уравнение, содержащее логарифмы, то для их упрощения или решения необходимо четко знать и использовать определение и свойства логарифмов.
Следует помнить, что логарифм любого положительного числа b по основанию положительного числа а, не равного единице, называется некоторый показатель степени с, в который возводят число а, для получения b.
logab = c <=> ac = b.
Также следует помнить основное тождество:
Свойства логарифмов
1. Если имеется логарифм произведения двух чисел больших нуля, то данный логарифм можно записать в виде суммы:
Данное свойство вытекает из основного свойства степени — при умножении степеней их показатели складываются.
2. Логарифм частного двух чисел равен разности двух логарифмов:
Данное свойство было получено из свойства деления степеней — при делении степеней, показатели вычитаются.
3. Если некоторое число в степени находится под знаком логарифма, то показатель степени можно вынести вперед, тем самым, умножив логарифм на показатель:
Данное свойство вытекает из одного из основных свойств степенной функции — при возведении степени в степень показатели степеней перемножаются.
4. Если число и основание логарифма совпадает, то значение такого логарифма равно единице:
5. Логарифм по любому основанию равен нулю, если число равно единице:
6. При любом логарифме можно перейти от одного основания к другому. Для этого необходимо просто воспользоваться формулами:
Основная ошибка, которую допускают большинство — использование некоторого логарифма суммы. Запомните, не существует данной формулы: loga(b±c) ≠ logab ± logac.
Свойства логарифмической функции
Для любой логарифмической функции с положительным основанием, не равным единице, справедливы следующие свойства:
- Областью определения данной функции являются все положительные числа.
- Значением логарифмической функции является множество действительных чисел.
- Для основания степени, большего единицы, функция возрастает на всем промежутке рассмотрения.
- Если основание находится в пределах от нуля до единицы, то функция убывает на всем рассматриваемом промежутке.
- Данная функция не является парной или непарной.
- Если переменная равна единице, то функция превращается в ноль, то есть точка, в которой график функции пересекает ось ОХ — это (1;0).
Так как логарифмические функции являются обратными к показательны, то и решения логарифмических уравнений сводится по аналогии к решению показательных уравнений.
Существует три основных вида простейших логарифмических уравнений. Ниже представлены способы их решения:
Добавить комментарий